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We present a general method based on a multipole-expansion theory that allows us to calculate
efficiently and accurately the electrostatic forces and the dielectric constant of an assembly of spheres.
This method is applied to the study of two aspects which play an important role in the behavior of elec-
trorheological (ER) fluids. The first one concerns the calculation of the principal values €, and €, of the
dielectric tensor of the body-centered-tetragonal (bct) lattice, and the calculation of the induced dipole
on the particles in this lattice. These are rigorous calculations on physical properties of interest in the
study of ER fluids. These results support the idea that the columnlike aggregates which have been found
in ER fluids should have a bct structure. Although calculations based on the dipolar approach were pre-
viously presented, no results are available that confirm this idea rigorously. The second point concerns
an exact analytical derivation of an expression describing the many-body electrostatic forces among
spherical polarizable particles in terms of the multipole moments. We have compared this force expres-
sion, in the case of two-particle interactions, to some results from the literature. It agrees very well with
some analytical two-particle expressions for perfectly conducting spheres and also with some recent re-
sults concerning the interactions between two polarizable spheres. Furthermore, we present results for
three-particle contributions to the electrostatic force and show that these contributions are unexpectedly
large. In particular, the rate of divergence of the force between two conducting spheres can be consider-
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ably changed by the presence of a third one.

PACS number(s): 83.80.Gv, 41.20.—q

I. INTRODUCTION

The interest in electrorheological (ER) fluids has grown
sharply in recent years. This is related to the possible
technical applications of ER fluids and also to the experi-
mental and theoretical developments concerning the
study of this class of suspensions. An ER fluid consists of
polarizable particles in a nonconducting fluid. It is as-
sumed that the dielectric mismatch between the particle
and the fluid is large. If an external electric field is ap-
plied to an ER fluid, the particles aggregate and form
chains parallel with the applied field. These chains finally
aggregate to columnlike structures, completing a phase
separation process. In experiments it is possible to see
fibrous structures which span the entire distance between
the electrodes. This behavior can be understood by con-
sidering the dipolar approach; dipoles attract each other
if their interparticle axis is parallel to the external field,
and repel each other if the interparticle axis is perpendic-
ular to the external field. It should be emphasized that
the electrostatic interactions are more complex than de-
scribed above. For a short review of recent developments
in the study of ER fluids we refer to a review paper of
Halsey [1].

One of the topics in the study of ER fluids concerns the
internal structure of the aggregates which exist in these
fluids if an electric field is applied. Recently some results
have been reported concerning the internal structure of
the columnlike structures arising in ER fluids. Tao and
Sun have proposed a body-centered-tetragonal (bct) lat-
tice for the three-dimensional ground state of an ER fluid
[2]. They have drawn this conclusion by comparing the
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electrostatic ground state of several lattice structures
with point dipoles on their lattice sites. It is generally as-
sumed that this approach should contain the main phys-
ics because only the dipolar interactions are long ranged.
Actually, in the case of particles having high polarizabili-
ties with respect to the ambient fluid and for dense struc-
tures the multipolar approach should be used to obtain
more accurate results. In ER fluids both aspects play an
important role. Furthermore it has been shown that the
difference of the energy per particle is small if compared
to some other lattice structures, such as the face-
centered-cubic (fcc) or hexagonal-close-packed (hcp)
structures, in the point-dipole approximation roughly 5%
(even less than 1% if a multipolar approach is used, as
shown in this paper). It should be noted that surface
effects might then play a role, and, at finite temperatures,
also entropic terms may become important in determin-
ing the equilibrium structure. Using a laser-beam
diffraction experiment, Chen, Zitter, and Tao have
presented evidence for the bct lattice structure inside the
columns in an ER fluid of glass spheres [3]. It should be
emphasized that the columns may be interpreted as
quasi-three-dimensional structures because the columns
have a width of order a(L /a)?/3, with a the particle ra-
dius and L the distance between two parallel electrodes,
and L >>a [4,5]. Also numerical evidence exists using a
Monte Carlo simulation [6]. Davis has pointed out that
the dipolar approach could only be valid in the case of a
small dielectric mismatch, or B=(a—1)/(a+2)<<]1,
with a=¢, /€, the ratio of particle to fluid dielectric con-
stant [7]. Using a method introduced by Batchelor and
O’Brien [8] Davis has shown that for conducting spheres
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(= o) three lattice structures have the same electrostat-
ic ground state, the fcc, the hep, and the bet structures.
He has also considered columns with the lattice struc-
tures mentioned above. The existence of a surface leads
to a surface energy contribution to the electrostatic ener-
gy, and calculations with conducting particles on the lat-
tice sites show that under this circumstance the bct lat-
tice structure is favored. Davis has furthermore assumed
that for intermediate dielectric mismatch the three-
dimensional bct structure is favorable, even without the
stabilizing effects of the presence of a boundary, but no
convincing theoretical evidence exists at the moment to
support this idea. Some recent results of surface energies
of slabs of polarizable particles using a constant dipole
approximation [9] and a multipolar approach [10] suggest
that the balance which will favor one structure rather
than another one might be more subtle.

In this paper we present exact results for the effective
dielectric constants of the bct array. Because of the an-
isotropy of the bct lattice, which is uniaxial, two distinct
dielectric constants exist. Furthermore we give exact re-
sults for the induced dipole moments on the particles in a
bet lattice. These induced dipole moments are necessary
to obtain the electrostatic energy per particle, which is
needed to decide about the relative stability of the bct lat-
tice in comparison with, e.g., the fcc lattice. For this pur-
pose we have used a general method to study many-
particle electrostatic interactions among spherical parti-
cles which has been made suitable for calculations of elec-
trostatic properties of periodic arrays. We want to em-
phasize that the presented method is easily applicable to
any kind of lattice. Our method is based on the theory of
multipole expansions [11] which has already been used
very intensively to study two-particle electrostatic in-
teractions, or many-particle electrostatic interactions
with special particle configurations. Some examples are
the problem of an infinite chain of spherical particles or
regular arrays of particles (see, e.g., Refs. [12-16] for
some results where the multipole expansion has been
used). However, as far as we know, no results are avail-
able for random configurations of particles appropriate to
study some aspects of ER fluids. To check the reliability
of our method we have compared results for dielectric
constants of the three cubic arrays [simple cubic (sc), bec,
fcc] obtained with our method with those of McPhedran
and McKenzie [13], and of Sangani and Acrivos [14].
The agreement with their results is excellent.

Besides the presentation of a numerically efficient
method to determine the multipole moments we have also
succeeded in obtaining an exact expression for the elec-
trostatic force exerted on an arbitrary particle in terms of
the so-called generalized multipole moments. This
many-body expression has been compared with results of
two-particle electrostatic interactions. Also in this case
the agreement with data from the literature is perfect.
We want to emphasize that with the presented method it
is even possible to study the two-particle electrostatic
force for high values of a (the ratio of particle to fluid
dielectric constant) up to touching spheres. With a
method formerly introduced by Klingenberg et al. this
was not possible [17]. Even for low values of a, when
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multipolar contributions are not too important, an extra-
polation technique has been used to obtain the electro-
static force on nearly touching spheres [18]. With the
many-body expression we have also studied the electro-
static force exerted on a particle in a three-particle clus-
ter. It seems that the three-particle contribution is of the
same order as the two-particle contribution and depends
strongly on the cluster geometry. The force expression
may be used to study the rupture of solidlike structures
encountered in ER fluids, e.g., the way these structures
might break. Furthermore it might also be used in simu-
lation techniques to predict the trajectories of the parti-
cles in ER suspensions [19].

In Secs. II and IIT we present the theory which deals
with many-particle electrostatic interactions. We have
made a distinction between a random-particle approach
(Secs. III A and III B) and the case of periodic arrays of
polarizable spheres (Sec. IIIC). In Sec. IV we have
presented some values of the effective dielectric constants
of cubic lattices and compared them with results from the
literature. We also have presented values for the dielec-
tric constants of the bct lattice. The fifth section deals
with the stability of the bct lattice in comparison with the
fcc lattice. Then, in Sec. VI, we present an exact theoret-
ical derivation of an equation which expresses the electro-
static force on a particle in terms of the multipole mo-
ments. In Sec. VII this analytical expression is compared
to the numerical results obtained by Klingenberg [20,17]
for the two-particle case. The three-particle contribution
to the electrostatic force has been studied for two special
configurations. The results are presented in Sec. VIII. A
short conclusion will end this paper.

II. THE GRAND POTENTIAL MATRIX

We consider a system of N spherical particles im-
mersed in an unbounded fluid. The particles have a
dielectric constant €,, and the fiuid has a dielectric con-
stant €,. We do not make any restrictions concerning the
values of € and €, but it is obvious that the case €, =€y
is of no interest to us. All particles have the same radius
a and they have position vectors R;, i €{1,...,N}, with
respect to an arbitrary chosen origin. This system is act-
ed upon by a constant external electric field E,. For our
purpose in this section it is more convenient to study the
potential problem. The external potential is then

@olr)=—Eqyr . 2.1

No free charges are present in the system. Consequently,
to obtain the potential in the system, we have to solve the
Laplace equation:

Ag(r)=0, 2.2)

using the following boundary conditions at the surfaces
of all the particles in the fluid:

@1 ) =@ou(r;), with 1;ES; , 2.3)
a(piin(ri) _ a(pout(ri)
@ or; or

1

, with r,ES, , (2.4)

i



48 MANY-BODY ELECTROSTATIC INTERACTIONSIN . ..

@.(r;) is the potential inside particle i, with
i€{l,...,N}, and @,,(r;) is the potential inside the
fluid. The potentials are defined with respect to the
center of particle i, with r=r;+R;. S is the surface of
particle i and finally a=¢, /€, the ratio between the par-
ticle and the fluid dielectric constants. We have used the
spherical symmetry of the particles in Eq. (2.4). It is
known from many textbooks on boundary-value prob-
lems in electrostatics that a unique solution of the La-
place equation (2.2) exists which satisfies the boundary
conditions (2.3) and (2.4), e.g., Ref. [11]. We have studied
this problem using the theory of multipole expansions.
Knowing the potential, the electric field E(r) is known as
a function of r via the relation E(r)=—Vg(r) and the
electric displacement is given by D(r)=€E(r), assuming
an isotropic medium, which is correct within the parti-
cles and inside the fluid.

In this paper we shall express the potential inside the
fluid in terms of multipole moments. The externally im-
posed electric field and the multipole moments are related
through a linear relation:

$=2-Q.

The vector ¢ represents all derivatives of the external po-
tential at the origin of all N particles [i.e., Vg, (r;=0),
with n=0,1,2, etc. and i€{1,...,N}]. The vector Q
represents all components of the multipole moments be-
longing to the N particles. The matrix Z is composed of
N? tensors:

(2.5)

le ZIN

Z= ) (2.6)

Zyi  Zwn
and each tensor Z; i which relates the multipole moments
of particle j with the derivatives of the externally applied
potential at the center of particle i, depends on the
geometry of the N-particle cluster only, and can be deter-
mined for a special configuration without reference to the
applied potential field. Reciprocally there are no induced
multipole moments on the particles if the external field is
Zero.

A special version of the matrix Z is used in the study of
the induced dipoles on charge-free polarizable particles,
which we call the grand potential matrix II (Bonnecaze
and Brady [21)):

E=II-M,

(2.7)

with E a 3N-column vector whose components are the
externally applied electric field at the center of the N par-
ticle and M also a 3N-column vector with the induced di-
pole moments on the N particles. Of course, the grand
potential matrix depends also on the geometric
configuration of the particles only. The grand potential
matrix is the analog of the grand mobility matrix in low
Reynolds number fluid dynamics.

Finally we introduce an expression for the force exert-
ed by the particles (and the external field) on a reference
particle. The force on this spherical particle can be
found by integration of the Maxwell stress tensor over
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the surface of the sphere. The Maxwell stress tensor is
defined by (assuming the absence of magnetic fields) [11]

T(r)=-L

i (2.8)

E(r)D(r)—%l[E(r)-D(r)]
Consequently, we have for the force on the reference par-
ticle

F=a2[ T(r)e,da,

lrl=a

(2.9)

with €, the radial unit vector in a spherical coordinate
system and d () the element of solid angle. In Sec. VI we
show that it is possible to derive an analytical expression
for F in terms of multipole moments.

III. GENERAL SOLUTION
OF THE LAPLACE EQUATION

A. The general set of linear equations

It is generally known how to solve the Laplace equa-
tion (2.2) for this kind of problem [11,13]. For this
reason we only give here a short outline of the derivation.

The external potential, as introduced in Sec. II, is
defined with respect to an arbitrary origin. However, to
use the boundary conditions (2.3) and (2.4) it is necessary
to define the external potential with respect to the respec-
tive particle centers. Relatively to the origin of particle i
(with r=r;+R;), we have

@o(r; +R;)=—Eor; —Eo'R; =@o(r;) +1; . (3.1

The difference of the particle dielectric constant and that
of the fluid (a51) results, in addition to the external po-
tential, in a contribution to the potential fields inside and
outside the particles. The potential inside and outside
particle i may be expanded in terms of solid spherical
harmonics, a method among others used by McPhedran
and McKenzie [13] to study the conductivity of arrays of
conducting spherical particles. The potential inside par-
ticle i is, using spherical symmetry,

‘Piin(ri):%bi+¢’o(1'i)+ > Bfm’ilYIm(eixq?i) >
1(>0)
m

(3.2)

with Y, (6;,¢;) spherical harmonics defined with respect
to the center of particle i and f,, the expansion
coefficients. We need those solid spherical harmonics
which behave regularly for |r|—0. Equation (3.2) is, of
course, valid for each i€{1,...,N}. The potential in
the fluid surrounding particle i is a sum of contributions
from all the particles in the system (and the external po-
tential). Of course, these contributions consist of solid
spherical harmonics which behave regularly for |r|— .
The potential inside the fluid has the form

Pout T;)=1; +o(1;)

47 -
+ 2 Q]l % (l+l)Ylm(6"¢")
1S 21 s
i 4
+ 3 3 5t TVY(0,0))
j(#i)1(20)21+1 Y mer

m

(3.3)
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where the last term expresses the field due to the other
particles. The multipole moments Q;, are defined in the
following way [11]:

Ohn= [, Yin(6,0)ro(x)dV (3.4

with V; the volume of particle i and p(r) the charge den-
sity inside particle i. For each particle we can formulate
such an equation and a set of linear equation of the
coefficients {Q},,B).}, i€E{1,...,N}, can be obtained
by using the boundary conditions [Egs. (2.3) and (2.4)]
and the orthonormality relations of the spherical har-

to express all the coefficients B3i,, in terms of the mul-
tipole moments Q,. However, before we can use the
orthonormality relations for the Y,,(6;,¢;), with the
center of particle i as origin, it is necessary to express the
solid spherical harmonics, defined with respect to the
center of particle j, in terms of solid spherical harmonics
defined with respect to the center of particle i. The for-
mulas needed for this reformulation are the so-called
Hobson formulas. We use for this purpose the same no-
tation as used in earlier papers by one of the authors con-
cerning a study of N-particle hydrodynamic interactions
in suspensions [22,23]. For more details and references,
see these two papers. Equation (3.3) can be rewritten as

monics. Furthermore it can be shown that it is possible follows:

J

le i I+I)Ylm(9i"pi)

Pout(T;)=1; +@o(r;))+ 3

2o 21+1
m
+ S sy (6,9, 2 = | Mj (3.5)
S(Zo)(S—th)! l S i’ 1 :# > mst . .
t m

In this expression we have used the following shorthand notations:

| 4r (s+e)
Mt 1 2s +1) (s —1)! (3.6)
and
ji Y, sm~( ij i‘)
Mf = (— 1yl Es—m A0l Yiiom—cEymy) o

) nl+s,m—t

>
Ny (1 —m R’_1j+s+1

with §;; and 7;; the polar and azimuthal angles of the vector R;;=R; —R;. This expression is obtained from the gen-
eral form of the Hobson formula.

By substituting Egs. (3.2) and (3.5) into the equation of boundary condition (2.3) for @/ (r;) and @,
and applying the orthonormality condition of the spherical harmonics, we obtain the following result:

i 47
P 2p+1

1;), respectively,

—(2p+1) Mpq Ml
qu (P +q) 2#:) 120) 21+l Q/m II ,pq ) . (3.8)

m

Substituting the normal derivatives of Egs. (3.2) and (3.5) into the equation of boundary condition (2.4) for 8¢ (r;)/dr;
and d@,,(r;)/dr;, respectively, and applying also the orthonormality condition of the spherical harmonics gives the
second set of equations:

1 . 1 : pi
(1—a)3, nmEOzaq,O»En“(EmszOy)aq,ﬁEn“(EOxﬂEoy)aq,,l +apa? "B,

p+1 a-

=—4
T +1

n
420 4 par P
@s P (p +q) é, “2>0 2l+1

m

Ol Mf (R, | . (3.9

The quantities E,,, Eg,, and E,, are the components of the externally applied electric field and i is the imaginary unit.
The constants n,, and n,, are special cases of the n;, defined in Eq. (3.6). Substituting Eq. (3.8) into Eq. (3.9) for S,
gives the result

1 .
—ny(Eg, +iEg, )8

1 .
Blaasp,l nlOE()zaq,O_ S (Egy —iEg, )8, 1+
2 2

q,—1

n
0} a¥t1 A _ 5 |3 (3.10)
o (p+a) ;T |1 5o

m

2p +1 21 +1 O/ My mipg(Ryj) | 5
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with B (and B,) a shorthand notation for

g =—2L (a—1)
7 {pla+1)+1} °
This infinite set of linear algebraic equations for the mul-
tipole moments {Q},, ..., Q] is sufficient to determine
the matrix Z [Eq. (2.5)] or the grand potential matrix II.
It is not very difficult to present Eq. (3.10) in matricial

(3.11)

notation:
E, Z, " Z Q
=0 E N , (3.12)
Ey Zn, Zyy | |Qn
with all E;=(0,E,0,...,) and Q;={Q},;1=0,|m|=<1}.

The matrix components of Z;; can be derived from Eq.
(3.10). To determine the grand potential matrix it is
necessary to solve the set of linear equations (3.10) in
such a way that we express all multipole moments
(Qh,s ..., ON}, with =2 and |m|</, in terms of the
multipole moments {Q},,...,Q1,,}, with |m|=1.
These moments are related with the induced dipole mo-
ments on the N particles via [11]

i i
nQ10=M;,, n;10i:1=
i _— .
nQh,—1=M,;, +iM; , .

This operation is in fact a partial inversion of the matrix
defined in Eq. (3.12).

An important aspect of the set of linear equations is
worthwhile to be emphasized. The multipole moments
{Q(')’O, cee ,Qa'o} appear naturally in the set of linear
equations, but writing down explicitly the equations with
p»=0 and ¢=0 leads to the conclusion that these mo-
ments are all zero. The reason is the absence of free
charges on the particles.

The set of linear equations derived in this section has
an infinite number of unknowns. It is possible to solve
this set of linear equations if we define an upper limit for
the allowed values of / and p, e.g., I,y =Pmax —L. This
restriction is in fact the assumption that the set of mul-
tipole moments {Q},,...,QN} is zero for all I>L.

—M,, +iM;,

(3.13)

With the upper limit L we obtain L(L +2)N linear equa-
tions with the same number of unknown multipole mo-
ments. We call the solution the so-called Lth order solu-
tion of the set of linear equations. The choice of the
upper limit L depends on several factors, the most impor-
tant being the desired numerical accuracy with which the
multipole moments should be calculated and the conver-
gence behavior with increasing L of the multipole mo-
ments in which we are interested.

B. Reformulation of the set of linear equations
for numerical calculations

The set of equations derived in the preceding section is
not suitable for efficient numerical calculations. A refor-
mulation like the one used in [23] facilitates the calcula-
tions considerably. This reformulated set of equations
has been used in the study of the three-particle contribu-
tions to the electrostatic force which are presented in this
paper. Furthermore an adapted version has been used in
the following section in the case of periodic arrays.

Let us define the generalized multipole moments A5/
via the following transformations:

[Qf £~ 1)"Q] 1= 2’4:1 Ama! =D A
(3.14)
A, == d

(I —m)!

We see from the relations for the generalized multipole
moments A that it is sufficient to use the plus
coefficients, A ,mi etc., with m =0, and the minus ones,
A" etc., with m >0, in the set of independent
coefficients. We introduce these generalized multipole
moments to simplify the set of linear equations
mathematically. There 1s also a physical interpretation
because the moments A5 are proportional to the poten-
tial field and its derlvatlves evaluated at R; due to the
external potential and the presence of the other spheres.
See in this context the discussion about electrostatic
Faxén laws by Bonnecaze and Brady [21]. We do not
present the total derivation of the rewritten set of linear
equations but the final result only, which comes to

—B18,,1(2E0, 8,0+ Eo,8,1)=4,'+B, 3 3 Re[Ppl IxiPTlaii+iB, 3 3 Im[P,M I1x\tPtia,
JFEi) 1(21) jFED) K(z1)
m (20) m(21)
(3.15)
iB18,,1E0y8,,1=Ap'+B, 3 3 Re[P 1 x4 i+ig, 3 3 Im[P,;f;q Ixitettati, (3.16)
jED) 1(21) J(Fi) 1(21
m(21) m (20)

with x;;=a /R;;. In these equations we have introduced

the following shorthand notations:

A 1 (—1)ftptmtae I+p+1
Pinpg = 1= 5 %mo (p+q) mim R
XM}y, (RH)E(—1)"M] . (R;)] . (3.17)

r

It 1s noteworthy to emphasize that the special functions
P .pg are functions of the polar angle §;; and azimuthal
angle n;; only.

In principle it is possible to solve partially the set of
linear algebraic equatlons if we express all generalized
multipole moments A5, with [>2, |m|=</, and
i€f{l,...,N}, in terms of the generalized multipole mo-
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ments { A, A7, A’} with i€{1,...,N}. These
remaining moments are related to the components of the
induced dipole moments on particle i via the following re-
lations:

A;Bi:_iM, Al*iiz_LM,
a a

(3.18)

where we have used Egs. (3.13) and (3.14). We are now
able to calculate (numerically) the components of the
grand potential matrix.

C. The set of linear equations suitable
for periodic arrays

In this paper we consider two types of lattices. These
are the cubic lattices, with the crystal axes coinciding
with a Cartesian coordinate system, and the body-
centered-tetragonal lattice, with the crystal axis which
coincides with the fourfold axis of symmetry parallel with
the z axis. On the lattice sites we have put spherical po-
larizable particles of radius a. We may choose an arbi-
trary lattice site as the origin of a coordinate system. The
positions of the other lattice sites are then denoted by the
vector R; (with spherical coordinates R;, §;, and 7; ).
We assume the presence of an averaged macroscopic elec-
tric field E parallel to the z axis, which is the optical axis
of the bct lattice, or the x axis. The latter axis is assumed
to be parallel to the twofold symmetry axis of the bct ar-
ray. For the cubic arrays there is no distinction between
both situations in contrast to the bct array. The
configuration with the macroscopic field parallel with the
optical axis is of special interest in studying the ground
state of ER fluids. For the cubic or tetragonal lattices it
is possible to simplify the set of linear algebraic equa-
tions, presented in Sec. III B, considerably. We do not
present details of this reformulation, but some remarks
are useful. We have implicitly assumed one particle per
unit cell so that each particle is translationally invariant.
Consequently all generalized multiBole moments with the
same indices / and m are equal, 4j/= A;f. Furthermore
it can be shown that the imaginary parts in the set of
linear equations are zero (see discussion below concerning
the lattice sums). The final result is a set of linear equa-
tions which relates the averaged macroscopic electric
field with so-called generalized multipole moments A4, :

—B15, 1(2E, 5,0+ E,8, 1)
=4 +B, 3 XN g Am -
1=

m (=0)

(3.19)

We have introduced the following shorthand notation:

Ximipg= (ém Re[ Pl 1x/ TP, (3.20)
J

with x;=a/R;, and P,’;,’;pq is defined in Sec. III B. These
sums are modified three-dimensional lattice sums which
can be determined using a method introduced by Nijboer
and de Wette [24]. Using symmetry arguments it is pos-
sible to show that we may study separately the two cases
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where the averaged macroscopic electric field is parallel
to and perpendicular to the xy plane, respectively. Thus
Eq. (3.19) can be separated into two independent sets of
linear equations, one related with the z component of the
macroscopic field and the other with the x component.
This set of linear equations can be solved as explained in
Sec. III B.

The modified lattice sums in Eq. (3.20) consist of the
following elementary lattice sums:

Yim(§5m))

Slmznlm 2 ﬁl-+l
J

J (0)

, (3.21)

with & ;=R j /R, the lattice vectors nondimensionalized
by the particle separation along the x axis. The z axis of
the coordinate system coincides with the fourfold axis of
symmetry of the lattices under consideration. Conse-
quently we may conclude that S;,, =0 is m is not quadru-
ple. This is the mathematical reason of the decoupling of
the set of linear equations into equations related with the
averaged macroscopic field in the z and x directions, re-
spectively, which is discussed above [see Eq. (3.19)]. Fur-
thermore it can be shown that S}, is always real because
the lattice sums always include the pair of lattice points
(R;,€;,m;) and (R},£;, —n;), thus

S Im[P; ) Ix!TPtl=0.

mipg % (3.22)
Jj (0)

The remaining lattice sums can be calculated without
difficulty for / =3 using an Ewald summation technique.
For /=2 the above lattice sum is conditionally conver-
gent. It is sufficiently known how to handle this kind of
lattice sums for cubic arrays (see, e.g., McPhedran and
McKenzie where this problem has been discussed in more
detail [13]). In the same way one is able to obtain the ap-
propriate value for the conditionally convergent lattice
sum related with the internal structure of the bct lattice.
In this context it is useful to emphasize that the condi-
tionally convergent lattice sums can be obtained by tak-
ing the appropriate limits in the reformulated lattice
sums introduced by Nijboer and de Wette [24]. In Table
I we present the values of the lattice sums obtained for
the bet array for [ <8. Our value of the conditional con-
vergent lattice sum is in agreement with the one used by
Tao and Sun in their point-dipole calculations [2]. To
obtain accurate results for €. in the case of (nearly) close
packed structures the S;,,, with / up to 150, have been
used.

TABLE I. The lattice sums for the bct structure for / <8.

Im Spet
2,0(]]) +5.603 391
2,0(1) —9.787207
4,0 +9.809 174X 1072
4,4 —8.768 701 X 10?
6,0 +1.758071x 10!
6,4 —1.659 548 X 10*
8,0 +9.983326
8,4 +5.704 327 X 10*
8,8 +4.031592% 107
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1IV. THE DIELECTRIC CONSTANTS
OF INFINITE PERIODIC ARRAYS

In this section we present results concerning the dielec-
tric constants of the bct lattice. However, we start with
some results of a comparison of data of the dielectric con-
stants of several cubic lattices with spherical polarizable
particles on the lattice sites. For this comparison we
have used some results from the literature obtained by
McPhedran and McKenzie [13] and Sangani and Acrivos
[14]. We restrict ourselves to the presentation of some
dielectric constants of close packed simple cubic, body-
centered-cubic, and face-centered-cubic lattices for rela-
tive low values of @=¢, /€, (an exception is made for the
sc lattice where also some values for a=c are con-
sidered). The aim of this comparison is to show that our
theoretical method is good and its numerical implementa-
tion has been carried out correctly.

As expounded in Sec. III the multipole expansion
theory has been used to determine accurate values for the
induced dipole moment M and the components of the
dielectric tensor €. for several periodic arrays. The
latter is, of course, diagonal due to our choice of the
coordinate system. For the cubic lattices the principal
values of the dielectric tensor are equal, but for the bct
lattice we can distinguish two different principal values.
The principal value related with the optical axis will be
denoted by €, the other values by €,. After partial inver-
sion of Eq. (3.19) and using Eq. (3.18), we obtain the fol-
lowing relation between the averaged macroscopic elec-
tric field and the induced dipole moment (where we have
implicitly used the fact that the y component of the in-
duced dipole moment is equivalent to the x component):

Bia’E=C'M , 4.1)
with C a diagonal tensor of proportionality. A simple re-
lation exists for the effective dielectric tensor of the regu-
lar array [25,14]:

=€, (L+3BpC 1) . 4.2)
The tensor C is trivial for the cubic lattices (C=CI ), but
for the bct lattice we have, of course, two different values,
C” and C,. It is obvious that C is a complicated function
of volume fraction and depends strongly on the lattice
sums for the respective lattices.

We have made a comparison with some of the available
data in the literature. We had to be careful in selecting
those data with which we wanted to make the compar-
ison. The data presented by McPhedran and McKenzie
for the sc array are obtained with a method which
neglects the azimuthal terms [13]. However, their data
do not differ very much from ours up to close packed
volume fractions. For a more precise comparison we
have used some of their exact data for conducting spheres
which they presented in the same paper with the inten-
tion to show that their approximation was reasonable.
For ¢=0.5 they obtained €.4/€,=5.891 where we have
obtained 5.89131. For ¢=0.46 they obtained 4.315 and
we calculated 4.314 76. Our data are converged values up
to at least the last figure. McKenzie, McPhedran, and
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Derrick realized that their assumption concerning the
importance of the azimuthal terms did not work very
well for the bee and fcc lattices [26]. However, they have
presented results of full calculations and all their data
agree perfectly with ours for both the bcc and fec lattices.
Sangani and Acrivos have presented formulas to obtain
the effective dielectric constants of the three cubic lattices
[14]. Unfortunately they did not present data for the
effective dielectric constant for the full range of volume
fractions. Bonnecaze and Brady have used the method
of Sangani and Acrivos to obtain data for the dielectric
constant €. for three values of a (,10,0.01) to com-
pare their simulation data with [21]. We have calculated
the values of €.4 for a= o0 and may conclude that they
agree with those of Sangani and Acrivos for the sc and
bce array (within a few parts per thousand for nearly
close packed arrays). However, we have found serious
differences between our results and those based on the
method of Sangani and Acrivos which have been present-
ed by Bonnecaze and Brady for the fcc lattice if ¢ >0.6.
The reason seems to be some accuracy problems in their
interpolation method for the effective dielectric constant
of the fcc lattice (not for the sc or bee lattice) which has
relatively large consequences at high volume fractions.
Thus we cannot compare our results with these tabulated
data. Considering this discrepancy we want to emphasize
that our results are in excellent agreement with those of
McKenzie, McPhedran, and Derrick [26], and also with
calculations performed by Doyle [27], for ¢ =0.73. In
spite of the discrepancy noted above the method of San-
gani and Acrivos is correct. This might be concluded by
the fact that they presented exact results for the effective
dielectric constant for close packed arrays of particles
with low and intermediate relative polarizabilities. These
data are convenient and we have tabulated their data to-
gether with ours in Table II. The agreement is excellent.
On the basis of this comparison and with data presented
by McPhedran and McKenzie, McKenzie, McPhedran,
and Derrick, and Doyle we may conclude that our
method of formulating the infinite set of linear equations
leads to good results. This observation is important for
the remaining part of the paper, but also for future work
on sheared lattice structures. In the latter case we have
to apply our method to the most general case of triclinic
lattice structures.

TABLE II. The dielectric constants of close packed
configurations of the three cubic lattices calculated with our
method, denoted by €, etc., compared with some available re-
sults of Sangani and Acrivos, which are denoted by €, etc.
[14]. As far as we know no results are available in the literature
for a=100.

a €sc fch €bcc chAc €fcc fé:
0 0.3437 0.344 0.2172 0.217 0.1600 0.160
2  1.4585 146 1.6196 1.60 1.6876 1.69
5 24224 242 3.0352 3.04 3.3588 3.36
10 3.4738 3.47 4.6879 4.69 5.4688 5.47
20 4.814 4.81 6.893 6.89 8.500 8.49
50 6.98 6.9 10.58 10.5 13.97 13.8
100 8.8 13.7 18.9




2728

TABLE III. The principal values of the dielectric tensor for
conducting spherical particles on the lattice sites of the bct ar-
ray. The results are accurate up to the last figure quoted.

¢ €| €L

0.05 1.159 1.155
0.10 1.337 1.332
0.15 1.538 1.525
0.20 1.768 1.745
0.25 2.033 1.988
0.30 2.341 2.270
0.35 2.707 2.597
0.40 3.149 2.985
0.45 3.699 3.459
0.50 4.411 4.059
0.55 5.385 4.865
0.60 6.853 6.048
0.65 9.576 8.183
0.66 10.50 8.895
0.67 11.73 9.836
0.68 13.52 11.20

0.69 16.84 13.71

We present now some data concerning the two dielec-
tric constants of the bct lattice. This lattice resembles a
compressed bec lattice and has the lattice vectors a, =¢€,,
a,=¢€,, and a;=1V'6€, (these are not the lattice vectors
of the unit cell). The particles are on the lattice sites
ka,+la,+ma; and (k+L)a;+(+1)a,+(m+1L)a,,
with {k,/,m}E€Z;. The particles on both sets of lattice
sites are, of course, translationally invariant. The interest
in the physical properties of the bct array has grown
since it is a serious candidate for the internal structure of
the columnlike aggregates arising in electrorheological
fluids. We have calculated €, and €, for conducting
spheres on the lattice sites and presented them in Table
III. In Figs. 1-3 we show the dielectric constants as
function of ¢ for a € {0,10,100}. We have not tabulated
or plotted more results; the computer programs to calcu-
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2
FIG. 1. The relative dielectric constants € (solid line) and €,
(dashed line) as a function of the volume fraction ¢ for
a=¢,/e,=0.
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FIG. 2. The relative dielectric constants € (solid line) and €,
(dashed line) as a function of the volume fraction ¢ for
a=¢,/e;,=10.

late the necessary lattice sums and the components of the
dielectric tensor are available upon request from the au-
thors.

Finally we present in Table IV some accurate results
for close packed values of €, and ¢, for a bet array. The
values for € especially could be of interest in the study of
the dielectric constant of ER fluids. As we approach the
limit of conducting spheres it becomes more difficult to
obtain accurate values for the dielectric constants, but
our data give a good indication of these values. Consid-
ering the results from Tables IT and IV more closely we
see that the dielectric constant of the close packed fcc lat-
tice is larger than the dielectric constant €, of the close
packed bct lattice. If we consider the dipolar approach
we see the reverse effect if a>25. This point indicates
that one should be cautious in drawing conclusions from
a dipolar approach only.

19 T T T T T T

16 |- 1

13 |

1 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

¥
FIG. 3. The relative dielectric constants € (solid line) and €,
(dashed line) as a function of the volume fraction ¢ for
a=¢,/€;=100.
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TABLE IV. The dielectric constants of close packed
configurations of the bct lattice (first two columns). Results for
€ and € obtained via the dipole approximation can be found
in the last two columns.

a € € eﬁ €t
0 0.2249 0.1793 0.24 0.19

2 1.6513 1.6350 1.65 1.68

5 3.2428 3.0971 3.12 3.20
10 5.2542 4.8392 4.67 4.75
20 8.140 7.220 6.30 6.32
50 13.34 11.31 8.01 7.93
100 18.0 14.9 8.82 8.66

V. THE INDUCED DIPOLES
OF POLARIZABLE SPHERES ON A bct ARRAY

Recently some papers have appeared where the so-
called electrostatic ground state of electrorheological
fluids has been discussed [2,7,9]. In these papers it has
generally been assumed that the electrostatic energy per
particle should be minimum. The knowledge of the in-
duced dipole moment of the particles in a periodic array
is sufficient to determine the change in energy AW per
particle [11],

AW=—1e,M'E, 5.1
with M the induced dipole moment of a particle in the ar-
ray and E the averaged macroscopic electric field. The
energy per particle can thus be minimized by maximizing
the induced dipole on the particle. If the averaged mac-
roscopic electric field is large the kinetic energy plays no
significant role, consequently the most favorable struc-
ture is the one with the lowest electrostatic energy per
particle [28]. Before we present the results we want to
emphasize that an equivalent method is often used to
determine the electrostatically most favorable structure
[7]. If the relevant dielectric constant ratio €=€/€, is
known it is also sufficient to study the quantity
(€—1)/@cp, with @cp the close packed volume fraction.

First we consider the lowest-order solution of Eq.
(3.19) for the calculation of the component C; of the ten-
sor C [see Eq. (4.1)]. We have then the following simple
relation:

Ba’E,=(1—2B,x3S% )M,=C M, . (5.2)

In this equation x =a /R, with R the distance of lattice
sites along the x axis. Using x*=23¢ /167 for the fcc lat-
tice and x3=¢@V'6/87 for the bct lattice we obtain
C,=1—Bipx,, with ;=1 for the fcc array and
X;=1.0922364 for the bct array. If we introduce the
normalized  volume fraction, @=¢@/@cp (with
Pe=mw/3v2 and @¥t=27/9), and wuse of
(X@cp)®°=0.7404804, and (x;@cp)°=0.7625248, we
see

M (1—0.74058,9)
M (1—-0.76258,p)

(5.3)
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The bct lattice is more stable than the fcc lattice if A> 1,
or if B;®>0 (or a>1). This argumentation has been
used by Tao and Sun to show that, in the dipolar approxi-
mation, the free energy per particle in the bct lattice is
lower than in several other lattices [2]. For conducting
spheres Davis has shown that A=1 by using an expan-
sion in particle separation [7]. In Table V we show that
the assumption of Tao and Sun is also valid if converged
values of the induced dipoles of polarizable particles are
calculated (including many higher-order multipole mo-
ments). These final values are denoted by A_. We have
used the value of Davis for @ = o because our method is
not suitable to produce results in that particular case.
The values for =10 and 100, respectively, are accurate
up to the last figure. From these results we may conclude
that the free energy per particle remains lower for the bct
lattice if @ > 1, but the differences from the fcc case are
considerably more subtle. For a=0 we see that a reverse
behavior is favored: the fcc structure is more stable than
the bect one. Of course, this case is not interesting for ER
fluids, but could be checked experimentally. It should be
interesting to study surface effects in more detail for in-
termediate values of a, which are relevant for ER fluids,
to gain more insight in how surface tension influences the
free energy per particle in these systems. In this context
we would like to emphasize that for slabs with a low
number of layers a local simple cubic structure is some-
times more favorable than a local bcc structure [10].
This is related with an anomalous surface energy for the
sc structure. Recently Toor and Halsey have presented
some results of calculations of the surface energy for
several lattice structures in the so-called constant dipole
approximation [9]. They have also emphasized the
anomalous behavior of the surface energy of the sc struc-
ture. It is important to consider this point more carefully
for several lattice structures in relation with the electro-
static stability. Besides the surface effects another contri-
bution to the free energy may play a role since the
difference in free energy per particle for both close
packed structures is less than 1% if @ > 10. We can think
of temperature effects such as lattice vibrations.

Finally we want to briefly discuss some recently pub-
lished results concerning a comparison of the electrostat-
ic energy of close packed fcc and bet structures obtained
by Friedberg and Yu [29]. They have studied the electro-
static energy of these lattices including the dipole, octu-
pole, and 32-pole contribution in their calculations. The
results of this approach are equivalent to those obtained
by our method with L =35 (see Sec. IIl A). However, we
have performed calculations up to L =75 which is neces-

TABLE V. The induced dipole moment of a particle in a bct
array divided by the induced dipole moment of a particle in a
fcc array. A: dipole approximation, A : exact calculation.

a A A,
0 0.992 0.979
10 1.039 1.010
100 1.082 1.008
© 1.093 1.000
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sary when «a is large. Nevertheless we may conclude that
their results show the same trend that the difference in
electrostatic energy per particle between the bct and fcc
structure becomes much smaller if more multipoles are
included. Friedberg and Yu have noted that for the bct
structure the octupole moment is anomalously small.
Our results confirm this point. We explain this by the
large difference between the lattice sums S, for the bct
and fcc structures, respectively. From Table I we see
that Sth =0.0981, but for the fcc case we have obtained
Sfec = —7.5257 (see also Ref. [14]).

VI. THE MANY-BODY ELECTROSTATIC FORCE
AS FUNCTION OF THE MULTIPOLE MOMENTS

The electrostatic force between two spherical particles
of equal size was studied by Davis [30] and Arp and
Mason [31] for perfectly conducting spheres using bi-
spherical coordinates. They obtained analytical expres-
sions for the interparticle force, and lubricationlike ex-
pressions for two nearly touching spheres were presented
by Arp and Mason. More recently Klingenberg has de-
rived a method to calculate the interparticle force for the
more general case of two polarizable particles. His
method is numerical and restricted to the case of two
spheres in an external electric field. The electrostatic
force between two neighboring particles in an infinite
chain has been studied by Chen, Sprecher, and Conrad
[32]. The electrostatic interactions among all the spheres
in the chain have been included. Their results indicate
that the interparticle forces are approximately an order
of magnitude higher than predicted by the point-dipole
approximation. In this section we show that it is possible
to derive an analytical expression for the interparticle
force which is also valid for the determination of the elec-
trostatic force among particles in the many-body problem
contrarily to the results obtained using a bispherical
coordinate system. Our many-particle result for the in-
terparticle force is, of course, also valid for the two-
particle case. Then we can compare our results for two-
particle electrostatic forces to those obtained by Klingen-

J

Eout( |ri| =a ):EO_ 2

m

2[+1

g

(s +1)!

a’ " TA,(6;,9;)
s(=1)
t

le (1+2)Blm(9i7¢i)
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berg [20] and, for perfectly conducting spheres, by Arp
and Mason [31].

The knowledge of the electrostatic forces acting on the
particles in an ER fluid is fundamental since their rheo-
logical behavior will depend on the balance between hy-
drodynamic and electrostatic forces. When the latter
dominate, the solid particles agglomerate into aggregates
elongated in the direction of the field. Because of the
high concentration of the particles in these structures
which are the building blocks of ER fluids, we have to
take into account the many-body nature of the electro-
static interactions. Knowing the electrostatic and the hy-
drodynamic forces on each particle, their trajectory can
then be obtained using Stokesian dynamics simulation
[33]. This method has recently been used to simulate
sheared electrorheological fluids [18,19,34]. In one of
these papers, by Bonnecaze and Brady [19], a method to
calculate numerically the electrostatic forces has been in-
troduced which is similar to the one previously intro-
duced to calculate hydrodynamic interactions [33]. The
accuracy of such a method which mixes long-range
many-body interactions with short-range interactions be-
tween pairs of spheres could now be tested against our
analytical results.

In order to obtain an expression for the electrostatic
force on particle i in the suspension, we have to deter-
mine the integral introduced in Sec. II [Eq. (2.9)],

F=a’[  _ T(r)&dq,

efa

—J o Boulr Bou(x;)

I[Eout( )Eout( )]} € th 4

(6.1

where we have assumed that we approach the particle
surface from the fluid side. We have to determine an ex-
pression for the electric field in the fluid, defined with
respect to the origin of particle i. Using E ,,= — Ve,
we obtain

1 21 +1 Ql/mM/m st(Rtj . (62)

The functions A, (6,¢) and By, (0,p) are vector spherical harmonics (see for references and discussion Ref. [22]).

These vector functions have the following form:

A (0,0) =1, (0,08, + 0Py (1 in(09) 6.3)
i DI m T @8 30 0 o ¢’ '
B, (0,0)=—(214+1)Y,,(6,p)8,+ A,,(6,p) , (6.4)

with €,, €,, and ’éq) unit vectors in a spherical coordinate system. The last part of Eq. (6.2) can be eliminated with the
help of Eq. (3.10), which also eliminates the explicit reference to the external field E,. The final result is
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B, (0;,9;)

(6.5)

We do not consider the explicit form of the vector function X, (0, ¢) in detail here. This is presented in the Appendix.
Combination of this equation for the electric field in the fluid with the expression for the electrostatic force gives

F,=47mea® 3
X

—(I+p+4)
2 le qu ?

1) p(=D IP(a_l
m q
An outline of the calculation of the integral is presented
in the Appendix. Substitution of the final result for the
integral [Eq. (A8)] into the expression of F;, and using
furthermore the generalized multipole moments [Eq.
(3.14)] leads to the final expression for the force. The
final calculus is straightforward and we do not present it.
The Cartesian components of the force F; are

Fz,x _Efa2 E A1+1m+1 Al,_anI:-il,m+1)
m
1 (I+m+2)
X , (6.7)
B1+1 (l—m)'
F,,=—Ltie;a® 3 (A A — A A )
iy 3 f ILm“l+1,m+1 LmAI+1,m+1
1(z1)
m
|
x 1 (l+m+2).’ 6.8)
BI+1 (I —m)
F,,= lef“2 2 AN = Al A )
(=1)
m
1 (I+m+1)
X . (6.9)
B]+| (I—m)

We emphasize that these results are valid for an arbi-
trary number of particles interacting electrostatically.
The many-body interactions, i.e., the geometry of N-
particle cluster, are implicitly accounted for in the values
of the generalized multipole moments. It is obvious that
our expressions for the components of F; are easy to
evaluate numerically.

VII. THE TWO-PARTICLE ELECTROSTATIC FORCE:
A COMPARISON

In this section we compare our theoretical expression
for the electrostatic force to analytical results of Arp and
Mason [31] for the force between two perfectly conduct-
ing spheres and numerical data of Klingenberg [20] for
the force between two polarizable spheres in an externally
applied electric field. In order to do this comparison we
have to relate our force expression to the one used by
Klingenberg. Suppose we place particle 1 at the origin of
a Cartesian coordinate system while the other lies on the

1
)2f XimXpg 21[X,,,,~qu]

2,dQ . (6.6)

[

negative z axis at a distance R. The externally applied
electric field is in the xz plane and has an angle 0 with the
z axis. The force on the particle 2 is then [20]

F,=3¢€;a’BIE{x*[(2f, cos’0— [, | sin’0)e,
_fZ,F Sinzeex] s

with B=(a—1)/(a+2) and x =a /R. In this equation we
have a minus sign instead of a plus sign in front of the
coefficient f, r. This is due to the configuration of our
two-particle pair in the externally applied electric field.
It is not difficult to show that all generalized multipole
moments A’ are zero (thus F;,=0). We may then
identify the following relations:

(7.1)

1 I+1
S A2 AR, (7.2)
f2y 6x*( A7) &1 Br+1 Lo
1 I+ +2) 4y
_ A2Aa72
fz,i 6x4(A1+12)21(z1) Biii h ]Hl
(7.3)
y - v
20 1axta A
1
X 5 [HU+1)42 413
1(>1) Pl+1
—(I+DU+2) 4524401 .
(7.4)

To demonstrate the correctness of our method we have
calculated values of the force functions f, /|, and fr for
the most difficult case of conducting spheres (o= c0 ) and
compared them to the exact results of Arp and Mason.
For this comparison we have expressed the values ob-
tained by Arp and Mason in terms of the force functions
used in this paper. We may conclude from the examina-
tion of Table VI that the multipole expansion results are
in good agreement with those of Arp and Mason. The
small differences can be explained by the fact that the
data of Arp and Mason have a four-digit accuracy only,
with, of course, an uncertainty in the last digit of their re-
sults. That our expression leads to good results can be
seen if we consider the force function f, for touching
spheres. It is not difficult to obtain results consistent
with the analytical expression obtained by Arp and
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TABLE VI. The force coefficients f, f,, and fr are compared with those obtained by Arp and
Mason [31] for perfectly conducting spheres (a¢= ). The latter are denoted by the subscript AM.

R/a f|| fAM,|| fi Sfam,1 fr fam,r
2.0000 © 0.5557213 0.5557213 (3.1) 4.006 856
2.0002 587.23 587.4 0.555 84 0.5564 2.7032 2.706
2.0006 239.74 239.8 0.55608 0.5559 2.5619 2.562
2.0020 91.548 91.57 0.55690 0.5569 2.3712 2.371
2.0060 38.645 38.65 0.559 26 0.5592 2.1573 2.157
2.0200 15.231 15.23 0.567 46 0.567 8 1.8763 1.876
2.0600 6.6126 6.612 0.59053 0.5905 1.5901 1.590

Mason using an expansion in § with §=(R /a —2) << 1.
This expression is (Table 2, Ref. [31])
Sam,1 =26(3)—%1n2, with £(3)=1.2020569. From the
same table of Arp and Mason we can determine the
values of the other force functions in the case of touching
spheres. fau, diverges and fn r=104(3)/3. Our re-
sult for f has still not been converged to its final value;
this is the only case where the multipole expansion does
not lead to a satisfactory result.

In Table VII we present some values obtained for the
three force functions defined in Eq. (7.1) for a=10 and
100, and for different normalized separations between the
spheres. All the data are converged up to the last digit.
We have compared some of them with the few available
data in this range of interparticle separations calculated
by Klingenberg [20]. The Klingenberg results (with
0.01% accuracy) are very well reproduced. However, we
want to point out that with the analytic expression of the
electrostatic force we are able to calculate these functions
for high values of a when the particles are in contact.
Recently Klingenberg et al. have presented extrapolation
formulas to calculate the force functions for all interpar-
ticle separations because they could not obtain these
values with their numerical method to determine these
functions [18]. Their approximate functions have for
each a a set of fitting parameters which are tabulated in
Ref. [18] for a€{2,4,10,}. With these approximate
functions we obtain for a=10 the following results for
the force functions: f|| =7.293, f,=0.618, and
fr=1.496. This is in agreement with our data within

their error margins. Also Bonnecaze and Brady have
presented some results for the force functions for the
touching sphere configuration [19]. Their approach was
to calculate the electrostatic forces from the derivative of
the electrostatic energy, which is also an exact approach.
For a=10 they have calculated f,=5.17, f,=0.63, and
fr=1.44. The difference with the exact results, especial-
ly for f, is large. We do not know the reason for this
discrepancy. In their paper they have compared these re-
sults with extrapolated values of the force functions ob-
tained by using graphical data which were presented by
Gast and Zukoski [17,35]. These extrapolated values are
fy=5.20, f,=0.62, fr=1.46. These results are in
reasonable agreement with those of Bonnecaze and Bra-
dy, but unfortunately these data are not very accurate,
except the value for f,. They have not presented results
for higher values of a.

We conclude with the remark that our analytical ex-
pression for the electrostatic force seems to be the only
one which gives correct results for the force functions in
the entire interparticle range, and for all values of
a=¢, /€, with not too much computational effort. The
method of Klingenberg suffices to calculate the force
functions for all interparticle separations if a~1. They
had to introduce approximation techniques to calculate
the force functions in the entire interparticle range if
a = 10. The results of Arp and Mason are valid for con-
ducting spheres (¢= ) only. We cannot judge about
the method of Bonnecaze and Brady, more data are
necessary in that case.

TABLE VII. The coefficients f, f,, and fr for =10 and 100. Some of them are compared with
those obtained by Klingenberg [20] for polarizable spheres (denoted by KL).

a R/a S SKL| f1 SxL1 fr SfxLr
10 2.0000 7.2870 0.6192 1.5035
2.0020 6.8441 0.6204 1.4933
2.0060 6.2021 0.6227 1.4749
2.0200 4.9332 0.6307 1.4244

2.0600 3.4708 3.472 0.6529 0.6529 1.3328 1.3328

2.1000 2.8275 2.8279 0.6743 0.6743 1.2753 1.2753
100 2.0000 182.21 0.5624 2.3087
2.0020 51.802 0.5636 2.1509
2.0060 27.883 0.5659 2.0153
2.0200 12.881 0.5741 1.7988

2.0600 6.0721 6.075 0.5972 0.5972 1.5520 1.5520

2.1000 42731 4.2739 0.6195 0.6195 1.4321 1.4321
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VIII. THREE-PARTICLE CONTRIBUTIONS
TO THE ELECTROSTATIC FORCE

We shall now present the results of a study of the elec-
trostatic force acting on the particles in a three-particle
cluster. We consider two special configurations which
are suitable to show the importance of incorporating
three-particle contributions in the study of, e.g., the re-
storing force used in theories to describe yield stress phe-
nomena in ER or magnetorheological (MR) fluids. The
first configuration under consideration is one where we
have situated all particles on a line. Particle 1 has been
put in the origin of a coordinate system, and particles 2
and 3 on the negative z axis. In the second configuration,
we have put the three particles on the corners of an equi-
lateral triangle. This configuration has the advantage
that the particles can touch each other simultaneously.
We have chosen these two configurations because the first
one is of interest in the study of the restoring force on
particles aligned with a specified angle with respect to an
externally applied electric field. The other one may be of
interest because these configurations appear in dense
structures.

We consider now the first configuration. We can use
the set of linear equations introduced in Sec. III B. The
particles are situated on the z axis with

IR;;|=|Ry;|=R, |R;[=2R,

£§12=0, £3=0, £,3=0.

Substitution of Eq. (8.1) into our set of linear equations
[Egs. (3.15) and (3.16)] for the respective interparticle dis-
tances and angles leads to a considerably simplified set of
linear equations. The set of liner equations is decoupled
concerning the azimuthal indices, and the functions
P,,i"jqu are real functions (the phase factors in the spheri-
cal harmonics are equal to unity). The latter has the ad-
vantage that we can solve the set of algebraic equations
independently for the coefficients 4,/ and 4,,”. These
simplifications make it possible to study solutions of the
set of linear equations with taking into account many
multipole moments. The largest value of the upper limit
used in one of our calculations was L =500. Using the
symmetry of the particle configuration it is sufficient to
assume that the externally applied electric field is in the
xz plane (the angle between the z axis and the applied
field vector is denoted by #). Consequently we have to
deal with the solution of the coefficients A4/, with
J€1{1,2,3}, in terms of the external field only.

It is often assumed that the electrostatic force acting
on a particle in a cluster of polarizable spheres can be de-
scribed using the assumption of additivity of the two-
particle forces. If we apply this assumption for the calcu-
lation of the force on particle 1 we obtain, using the nota-
tion introduced by Klingenberg [20],

(8.1)

F,= —3¢;a’BIE}x*[(2F cos’0—F, sind)e,
—Fr(sin20), ], (8.2)

with x =a /R and 6 the angle between the z axis and the
externally applied electric field. The modified Klingen-
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berg force functions are now

Fo.=f(R)+Lf(2R),, «E{|,L,T}. (8.3)

This relation can be obtained by considering the sum of
the electrostatic force on particle 1 caused by the other
two particles taking into account that x 3 =a /R ;=1x.
We have calculated the exact three-particle values of the
force functions (F5;,) and tabulated the results normal-
ized by the force functions F,,, for four values of
a=ge, /€f (0,100,10,0) in Table VIII. The calculations
are performed for R €{2,2.01,2.1,2.5,4}. It is remark-
able that the three-particle contribution to the electro-
static force is so large. The three-particle contribution to
the electrostatic force is for nearly touching spheres of
the same order as the two-particle contribution. We see
that even for relatively large interparticle distances the
three-particle contribution is substantial. We might ex-
pect that even fourth and higher-order contributions are
significant. In Figs. 4—6 we have plotted the normalized
values of the functions Fy, F3, and F3p for =10 and
100 as a function of L, the number of multipole moments
used in the calculation. We can conclude that especially
the lower-order multipole moments contribute to the final
result, although we see for higher values of a that we
need many multipole moments to obtain a reasonably
converged value. Furthermore we see from Figs. 4-6
that including induced dipoles and quadrupoles in the
calculation of the force functions (L =2) is not sufficient
to obtain qualitatively correct results. It is difficult to ob-
tain converged values for the normalized force functions

TABLE VIII. The three-particle force functions F;,, with
K€ {||,L,I') normalized by the modified two-particle force func-
tions, with F, = f,(R)+ & f(2R) [see Eq. (8.3)].

a R/a F3 /Fy F;, /Fy Fyr /Fyr
o 2.000 1.9 0.914 1.39
2.010 1.534 0.915 1.235
2.100 1.329 0.924 1.131
2.500 1.149 0.950 1.049
4.000 1.034 0.985 1.009
100 2.000 1.584 0.916 1.263
2.010 1.476 0.917 1.209
2.100 1.310 0.926 1.123
2.500 1.144 0.952 1.047
4.000 1.033 0.985 1.009
10 2.000 1.255 0.934 1.109
2.010 1.247 0.935 1.103
2.100 1.197 0.942 1.075
2.500 1.103 0.962 1.033
4.000 1.025 0.988 1.007
0 2.000 0.914 1.045 0.988
2.010 0.915 1.045 0.988
2.100 0.924 1.041 0.987
2.500 0.950 1.026 0.989
4.000 0.985 1.008 0.996
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FIG. 4. The normalized force function Fs /F, as a function
of the number of multipole moments L used in its calculation.
The upper curve represents results for =100 and the lower
one for a=10.

F3, and F; for the case of touching conducting spheres.
The presented values should be taken with care because
convergence behavior could be very slow. The calcula-
tions are performed by taking into account up to 500
multipole moments (L =500) and the limiting results,
especially for Fy;, may be considered as a lower bound.
In Fig. 7 we have plotted the normalized force function
Fy,/F,, as a function of the multipole moments. From
this figure, and the behavior of the functions for touching
spheres in the case of increasing «a, and the behavior of
the force functions for conducting spheres in the case of
decreasing interparticle distance, we may conclude that
(F3/Fy)a=w,r/a=271 (kE{],L,T}). This means that
the lubrication forces between two nearly touching parti-
cles are strongly influenced by the third particle. The
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FIG. 5. The normalized force function F3, /F,, as a function
of the number of multipole moments L used in its calculation.
The upper curve represents results for a =10 and the lower one
for a=100.
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FIG. 6. The normalized force function F;r /F,r as a function
of the number of multipole moments L used in its calculation.
The upper curve represents results for =100 and the lower
one for a=10.

values of the electrostatic force on the other two particles
are trivial. The electrostatic force on particle 2 is zero,
and the one on particle 3 is related to the force on parti-
cle 1, F;=—F,.

In the study of the static yield stress of sheared ER or
MR fluids it is generally assumed that the electrostatic
forces are pairwise additive. This means in practice
nearest-neighbor interactions only. Klingenberg and
Zukoski have derived a theoretical expression for the
static yield stress based on the assumptions mentioned
above [36]. They have modeled the ER suspension as a
two-dimensional array of chains of particles spanning the
electrodes. The chains are sheared and on each particle a
restoring force is exerted. This restoring force has the
following form [36]:

T T T T
1.9 | ;
-9
ce®®’®
,0-0
-0
o-®
oo
1.8 | ’ .
F /F /
3n/ 21 ,.'.
1
1
1
L4
1.7';/ -
1.6 L 1 1 1
100 200 300 400 500
L

FIG. 7. The normalized force function Fj/F for touching

conducting spheres as a function of the number of multipole
moments used in the calculation.
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F,s=3€,a’BE3x*[(2F, +2F)sinf cos’0—F, sin*0] ,

(8.4)

where 6 is the angle with which the chains are tilted (the
electric field is perpendicular to the electrodes). The
configuration for three particles is shown in Fig. 8.
Klingenberg et al. assumed that at some critical value of
the strain, which is assumed to be related to the max-
imum restoring force, the chains will break and will re-
form with the nearest-neighbor chain. They have derived
an expression for the static yield stress which is among
others a linear function of the maximum value of the di-
mensionless restoring force F,, and a function of the an-
gle 6,, at which the restoring force is maximum. They
have calculated the values F,, and 0,, for several values
of @ <15. We have calculated these values for several
values of «, including three-particle contributions, and
tabulated them in Table IX. We have compared the
values with those obtained using two-particle interactions
only. The main conclusion is that the values of the max-
imum restoring force are roughly between 20% and 50%
higher than calculated with the additivity assumption of
the electrostatic forces. The values of 6,, are slightly
lower (2-10 %) than the previously calculated values.
Recently experimental results have been reported con-
cerning the static yield stress in MR fluids [37]. The
measured yield stress values were roughly 40% lower
than the theoretically obtained values based on the pair
additivity assumption. If we include three-particle in-
teractions the discrepancy even grows to about 100%.
The second configuration is more complicated. We
have put particle 1 in the origin of a Cartesian coordinate
system, particle 2 on the negative z axis, and the third
particle in the xz plane (Fig. 9). The interparticle dis-
tances are all equal, |R,|=|R;5/=|R,;|=R. Further-
more §,=0, §;3=17, and £,;=27. In the present case
we cannot simplify the set of linear algebraic equations by
using a decoupling procedure concerning the azimuthal
indices. This has major consequences for the choice of
the upper limit L. In the problem described above we
had to solve 3L linear equations, but in the case of three
particles on the corners of an equilateral triangle we have
to solve 3L(L+2) linear equations. The only
simplification is again the decoupling of the set of equa-
tions concerning the general multipole moments 4,/ and
A,J. From this decoupling we may conclude that the y

Tes

FIG. 8. Illustration of the tilted three-particle configuration
used to calculate the restoring force on particle 1.
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TABLE IX. A comparison of the two- and three-particle re-
storing forces, F, , and F, ;, respectively, together with the
values 6,, , and 6,, ; at which these forces are maximum.

a Fm,2 F, ; 9m,2 0m,3
5 0.0927 0.1064 17.11 16.83
10 0.1200 0.1454 13.91 13.37
15 0.1396 0.1756 11.77 11.08
20 0.1554 0.2011 10.17 9.42
25 0.1688 0.2236 8.91 8.14
50 0.2206 0.3150 5.16 4.60
100 0.2996 0.4598 2.51 2.29

component of the electrostatic force is zero if the applied
electric field is in the xz plane or equivalently, no force
component in the xz plane is the applied field is parallel
to the y axis. There exists, of course, another formulation
of the problem where one may use explicitly the fact that
the three-particle cluster has a threefold rotation axis.
However, computer programs are available to solve the
set of linear equations for the configuration with the par-
ticles in the xz plane. This program is convenient for our
purpose so we do not expound this particular approach.
In Table X we have presented results for the force exert-
ed on particle 3 in the case of an external field parallel to
the z axis and x axis, respectively. The tabulated data are
normalized by the pure two-particle electrostatic force
which can be obtained by using the following two expres-
sions:

Fy,=—3V3e,a’BEX*2f +2fr—3f,),

with Ey|[€, ,

— 33 2232244 (8.5)
Fy = 7‘/3€fa BiEx™(6f—2fr—f1),

with Ey|€, .

We have to consider the x component of the electrostatic
force only, because the z component is always zero by
symmetry arguments. Although the separate two-
particle forces in the x direction are attractive (i.e.,
directed to the center of the triangle) we may conclude
that the attractive force in the three-particle cluster is
much less than the sum of the two-particle contributions.
The two-particle approach leads in this case to a strong
overestimation of the attractive electrostatic forces in
contrast to the first configuration discussed in this section
where the particles are stuck together more strongly than
calculated in the two-particle approach. It is interesting
to note that these remarks remain valid for intermediate
particle separations, and also for low values of a.

FIG. 9. The three-particle triangle configuration with the x
component of the electrostatic force on particle 3.
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TABLE X. The three-particle electrostatic force exerted on
particle 3 (F3), normalized by the force obtained by using the
assumption of additivity of two-particle forces, for several
values of a and interparticle separations. In the second column:
Ey|€,, in the last column: Ey|[€,.

a R/a F,/F, (E,) F,/F, (E,)
100 2.00 0.56 0.56
2.05 0.634 0.621
2.10 0.664 0.637
2.20 0.706 0.651
2.50 0.790 0.686
25 2.00 0.615 0.611
2.05 0.656 0.636
2.10 0.681 0.646
2.20 0.719 0.658
2.50 0.800 0.696
10 2.00 0.671 0.653
2.05 0.691 0.657
2.10 0.711 0.662
2.20 0.744 0.672
2.50 0.820 0.714
2 2.00 0.835 0.755
2.05 0.846 0.760
2.10 0.856 0.767
2.20 0.876 0.784
2.50 0.920 0.839

Finally we want to emphasize the following point. The
normalized force functions converge more quickly to
their final values than the explicit results for the two- and
three-particle electrostatic forces, respectively. However,
reliable results for the two-particle electrostatic forces (or
the so-called Klingenberg force functions) up to touching
sphere configurations are easily obtained by our method
for ¢ =100. This is related to a decoupling procedure
concerning the azimuthal indices discussed above. The
effect of fast convergence behavior of the normalized
forces to a value not equal to one seems to indicate that
the lubricationlike forces for nearly touching spheres in
the three-sphere cluster is not simply a sum of the two-
particle lubrication forces. This can also be shown by
considering the pure three-particle contribution to the
electrostatic force. This contribution has the same con-
vergence behavior as the two-particle contribution.

We can conclude this section by remarking that it is
not sufficient to consider two-particle electrostatic in-
teractions only if studying the forces among polarizable
particles. The three-particle contributions are of the
same order as the two-particle contributions and the final
effect on the behavior of three-particle clusters is not
trivial. Furthermore it has been shown that a simple ap-
proach by considering the lowest-order multipoles only
(induced dipoles and quadrupoles) does not give very ac-
curate results for the force functions for higher values of
a (see Figs. 4—7). The remark made by Klingenberg, Van
Swol, and Zukoski that the multibody contributions to
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the pair electrostatic interactions are insensitive to the
details of the structure seems incorrect [18].

IX. CONCLUSION

In this paper we have presented a method to study
many-particle electrostatic interactions using the theory
of multipole expansions. We have been able to reformu-
late the obtained set of linear algebraic equations in a way
suitable to perform calculations for both periodic arrays
as the N-particle cluster with arbitrary particle
configurations. The results obtained with this method for
the dielectric constants of cubic arrays, and for the force
functions of Klingenberg to describe two-particle electro-
static forces, are in perfect agreement with results from
the literature.

We have presented rigorous calculations, including
higher-order multipole moments, for the dielectric con-
stants of the bct array, and the induced dipole moments
of the particles in that array. First we may conclude that
the claim of Tao and Sun which states that the bct struc-
ture should be more favorable than the fcc or hep struc-
ture is justified, although they used a dipolar approach
only. However, the differences with the fcc structure are
much smaller than those calculated by Tao and Sun (for
a=100, typical for ER fluids, a factor 10 lower). Conse-
quently we may expect that surface and temperature
effects play a more important role than previously as-
sumed. Its precise role should be investigated in more de-
tail. Another conclusion is that the diagonal components
of the dielectric tensor of the bct array at close packed
configurations are always lower than the dielectric con-
stant of the fcc array at close packed configurations for
1 <a < o« contrarily to the results obtained with the di-
polar approach if a=25. We have considered in this
comparison only close packed configurations, but we may
expect that it is also valid for more dilute arrays.

Using the theory of multipole expansion we have ob-
tained an analytical expression for the many-particle elec-
trostatic forces in terms of generalized multipole mo-
ments. This expression is simple as is its numerical im-
plementation. We want to emphasize the fact that we did
not make any special assumptions concerning the
geometry of the N-particle cluster under consideration.
This expression is used to study three-particle contribu-
tions to the electrostatic force and the conclusion is that
these contributions can be as important as the two-
particle contribution if the interparticle separation is not
too large. In particular, for three aligned conducting
spheres which are almost touching, the rate of divergence
of the force between two particles is almost two times the
rate of divergence for two spheres alone. Our many-body
expression may be used in various studies of the behavior
of electrorheological fluids, e.g., in a theory describing
rupture effects in ER fluids or in dynamic simulation
methods.

ACKNOWLEDGMENT

Computer time has been provided by the Centre de
Calcul Vectoriel pour la Recherche.



48 MANY-BODY ELECTROSTATIC INTERACTIONS IN . ..

APPENDIX

We present an outline of the calculation of the follow-

ing integral:
[ (X1 (6,0)X,,(0,@)— 1I[X,,,(6,0)-X,,,(6,9)]} €,d 2,
(A1)

with X, (6,¢) a shorthand notation for |
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le(G,cp)EalY,m(Q,(p)/é,—F a)’lma—(ee,w‘,ég
1 a Ylm ( 6’ 4 ) N

sin@ dp o>
with €,, €, and €, the unit vectors in a spherical coordi-
nate system and a some arbitrary constant. The in-
tegrand of Eq. (A1) can be written in the following way:

(A2)

_1 sl o) 19Ym AY,R) 1 3, VR
’lequ 2 LK Kpg) | €, =5 @ lpY 1 (Y€)= 5 —50™ — 2sin%0 dp O
+Lap+n) | iy gp L Dimy 4 (A3)
o \caP 90 P19 sin® dp PP

We may express qu’é,, which is in fact a product of
spherical harmonics, in terms of single spherical harmon-
ics by using the following expressions:

(p+qg+1)p+q+2)
(2p +1)(2p +3)

172

n Y 1Y, =

pq Yp+1,q+1

172

Yp—l,q+1 ’

(p—q)p—q—1)
(2p +1)2p—1)

1/2
nllyl) 1)7 — ‘ q p q

Y, _
(2p +1)(2p +3) ptlg—l

172

Y 14-15

(p+q)p +q—1)
2p+1)2p—1)

172

Y, i1,

(p+qg+1)p—q+1)
(2p +1)(2p +3)

Y oY, =

172
(p+q)p —q)
(2p+1)(2p—1)
Furthermore we may identify the following relation:

aYlm aYst 1 aYIm aYst _

p—Lg *

f
with C,,, vector spherical harmonics as introduced in

Ref. [22]. The first part of Eq. (A1) can be determined
using the following relations:

[ Y1 (6,0)Y,,(6,9)dQ=(—1)"8,,8_,,, , (A5)

J Cim(6,0)-C,(6,0)dQ=(—1)"1(1+1)8,5_,,, -
(A6)
The remaining part of Eq. (A3) (the last term between
large parentheses) is more difficult to evaluate. We intro-

duce first the following differential operators (see, e.g.,
Messiah [38]):

) Y, 9y,
L.Y,, =e®®|+— 4 coto—" (A7)
With these operators we are able to express the relation
aYlm A~ 1 aYIm PN
€gt+— €
a0 sin@ d¢p ¢

in terms of single spherical harmonics. The orthonormal-
ity relation (AS) is then sufficient to determine also the
final part of integral (Al). The complete calculation of
this integral is straightforward, and we restrict ourselves
to the presentation of the final result only, which has the

360 9360  sin?@ d¢p dp ~CimCor (Aad following form:
J
[ [X,m(G,qu)qu(B,qJ)—%l[xlmwﬂp)'qu(e,‘i?)] €,dQ
= =M+ D@ =2all+1) = (1+2)] %(ex—iey)!”*(’2’;11;8;";;“2) l/zsq,_m_l
_%@"Hey) (1—(;;111)((121—?;2) 1/28""’"“

+

N =

(=)™ —D[lo?+2a(l +1)—(+1)] [—%('éx—zey)

A

1/2
(I—m)I—m—1) | ¢
(21 +1)(21—1) ¢-m-1

(I+m)l+m—1) /25
(2I+1)21—1) ¢—m+l

172
| o [

+ 2@, +i8,)

(I +m)l —m)
(21 +1)21—1)

A
z

(A8)
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